Vladimir Mazya, Date of Birth, Place of Birth

    

Vladimir Mazya

Swedish Mathematician

Date of Birth: 31-Dec-1937

Place of Birth: Saint Petersburg

Profession: mathematician, university teacher

Nationality: Sweden

Zodiac Sign: Capricorn


Show Famous Birthdays Today, Sweden

👉 Worldwide Celebrity Birthdays Today

About Vladimir Mazya

  • Vladimir Gilelevich Maz'ya (Russian: ???????? ????????? ?????; born 31 December 1937) (the family name is sometimes transliterated as Mazya, Maz'ja or Mazja) is a Russian-born Swedish mathematician, hailed as "one of the most distinguished analysts of our time" and as "an outstanding mathematician of worldwide reputation", who strongly influenced the development of mathematical analysis and the theory of partial differential equations.Mazya's early achievements include: his work on Sobolev spaces, in particular the discovery of the equivalence between Sobolev and isoperimetric/isocapacitary inequalities (1960), his counterexamples related to Hilbert's 19th and Hilbert's 20th problem (1968), his solution, together with Yuri Burago, of a problem in harmonic potential theory (1967) posed by Riesz & Nagy (1955, chapter V, § 91), his extension of the Wiener regularity test to p–Laplacian and the proof of its sufficiency for the boundary regularity.
  • Maz'ya solved Vladimir Arnol'd's problem for the oblique derivative boundary value problem (1970) and Fritz John's problem on the oscillations of a fluid in the presence of an immersed body (1977).
  • In recent years, he proved a Wiener's type criterion for higher order elliptic equations, together with Mikhail Shubin solved a problem in the spectral theory of the Schrödinger operator formulated by Israel Gelfand in 1953, found necessary and sufficient conditions for the validity of maximum principles for elliptic and parabolic systems of PDEs and introduced the so–called approximate approximations.
  • He also contributed to the development of the theory of capacities, nonlinear potential theory, the asymptotic and qualitative theory of arbitrary order elliptic equations, the theory of ill-posed problems, the theory of boundary value problems in domains with piecewise smooth boundary.

Read more at Wikipedia